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This work considers the compressible flow field established in a rectangular porous
channel. Our treatment is based on a Rayleigh–Janzen perturbation applied to the
inviscid steady two-dimensional isentropic flow equations. Closed-form expressions
are then derived for the main properties of interest. Our analytical results are verified
via numerical simulation, with laminar and turbulent models, and with available
experimental data. They are also compared to existing one-dimensional theory and
to a previous numerical pseudo-one-dimensional approach. Our analysis captures the
steepening of the velocity profiles that has been reported in several studies using either
computational or experimental approaches. Finally, explicit criteria are presented to
quantify the effects of compressibility in two-dimensional injection-driven chambers
such as those used to model slab rocket motors.

1. Introduction
Berman (1953) first treated the incompressible flow through a permeable channel

by perturbing a similarity solution for small wall injection or suction. Taylor (1956)
extended the idea by using an integral method to describe the flow through not
only rectangular channels, but also through tubes, cones and wedges. Yuan (1956)
considered Berman’s original work and sought an asymptotic expansion valid for
large injection Reynolds numbers. Proudman (1960) extended the large-Reynolds-
number solution by considering arbitrary strength injection or suction for either wall
of a rectangular chamber.

The study of the permeable walled channel has since been used to investigate a
wide array of practical problems. Taylor’s groundbreaking work was inspired by the
drying of paper in an automated paper mill. Berman was motivated by the need for
modelling isotope separation. Yuan (1959) and Peng & Yuan (1965) have studied the
flow as a means of controlling temperature via sweat cooling. Our study shares the
same objectives that led Culick (1966), Traineau, Hervat & Kuentamann (1986), and
Balakrishnan, Liñán & Williams (1992) to devise non-reactive formulations for the
internal flow field of a solid rocket motor.

Taylor’s analysis of the permeable walled channel furnished a reliable approximation
to the core flow inside a solid rocket motor. This was later used at the foundation of
many studies seeking to determine (a) the ensuing unsteady wave motion or (b) the
flow instability (e.g. Beddini & Roberts 1988, 1992; Staab & Kassoy 1996; Casalis,
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Avalon & Pineau 1998). While Taylor’s solution was inviscid, the normal injection
condition secured at the sidewall enabled the fluid motion to retain some of the
features we normally reserve for a viscous flow. To date, Taylor’s incompressible
model remains one of the most cited and used in solid rockets. It has been considered
by Traineau et al. (1986), Balakrishnan et al. (1991), Beddini & Roberts (1992), Apte
& Yang (2001), Balachandar, Buckmaster & Short (2001), Zhou & Majdalani (2002),
Najjar et al. (2003) and many others. Two key factors justify its ubiquitous use:
the suitability of non-reactive models to simulate the idealized environment in a
rocket motor and the validity of using a non-deformable permeable chamber with
non-regressing walls. The first factor may be attributed to propellant heat release
being confined to a relatively thin flame zone forming above the burning surface
(see Chu, Yang & Majdalani 2003). The second factor may be associated with the
weak sensitivity of the streamline curvature to the wall regression rate. As shown by
Majdalani, Vyas & Flandro (2002), the effect of propellant regression is small in the
operational range of most motors.

The motivation for extending the solution to include compressibility is clear.
While previous studies have attempted to determine the effects of compressibility
in solid rocket motors, none of these have managed to capture the fully two-
dimensional behaviour in closed form. The most notable of these are analyses by
Flandro (1980), Traineau et al. (1986), King (1987), Balakrishnan et al. (1992) and
Gany & Aharon (1999). Most are pseudo-one-dimensional or limited to numerical
integral formulations; moreover, studies with analytical solutions often bear more
severe limitations than those imposed in the present work. Clearly, the quest for a
compressible analogue to the Taylor profile would be valuable in advancing the theory
of internal rotational compressible flow where most problems are solved numerically.
Furthermore, with increases in computational power and complexity in available
solvers, more accurate and extensive analytical models are becoming desirable to
verify the efficacy of new computational routines. Along similar lines, a compressible
steady flow model can help investigators to recast the time-dependent flow formulation
in rocket motors; the existing relations represent waves that are strongly affected by
compressibility (see Majdalani 2001). Finally, a compressible Taylor representation
could be applied to the nozzleless motor concept. As described by Gany & Aharon
(1999), the nozzleless motor gains in simplicity what it lacks in power.

Traineau et al. (1986) tackled this problem numerically using a two-dimensional
integration of the Euler equations via a finite volume predictor–corrector method;
they also provided useful experimental results. Vuillot & Avalon (1991) solved the two-
dimensional laminar compressible unsteady Navier–Stokes equations to understand
the effects of compressibility on the acoustic boundary layers in solid rocket motors.
Wasistho, Balachandar & Moser (2004) conducted full numerical simulations in an
attempt to quantify the effects of compressibility on the transition to turbulent flow.

The first analytical method used in this context is the Prandtl–Glauert expansion
(see Shapiro 1953). The velocities of interest are expanded in a series of a shape
parameter. These perturbed equations are then solved via traditional methods to
determine the solution to the flow field. Kaplan (1943, 1944, 1946) has successfully
applied the Prandtl–Glauert expansion to a number of different external flows.

In work more applicable to this study, a variant of the Prandtl–Glauert technique
is used by Balakrishnan et al. (1992) in a slender rocket motor. They expand the
governing equations in terms of the shape parameter, h/a, where h is the height of
the motor and a is the length. For slender motors, this term is small, thus reducing the
truncation error in Balakrishnan’s pseudo-two-dimensional approach. Following an
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Abel inversion (see also Traineau et al. 1986), a single equation is obtained that can
be readily integrated to determine the pressure distribution with respect to X, where
X is a strained coordinate. This approach provides a benchmark for compressible
rocket studies. By reducing the problem to the numerical evaluation of a simple
integral, the technique in question proves to be much less computationally intensive
than that employed by Wasistho et al. (2004). The latter rely on the numerical
integration of multidimensional Navier–Stokes equations to obtain a compressible
flow representation that conforms to the results predicted by Balakrishnan et al.
(1992).

Our method of choice is the Rayleigh–Janzen perturbation expansion. So named
after the work presented by Janzen (1913) and Rayleigh (1916) in solving compressible
flows, this technique requires all dependent variables to be expanded in a series of the
Mach number squared. The expanded variables are then substituted into the modelled
equations and segregated in order of the Mach number. The linearized equations are
then solved by traditional methods to determine the explicit solution to the problem.
Unlike the Prandtl–Glauert expansion, this method is not restricted by the size of the
motor, making it ideal for handling a wide range of aspect ratios. Furthermore, its
requirement for a small characteristic wall Mach number is assured in the range of
rocket motor operation. The Rayleigh–Janzen method can thus render solutions that
are valid over the entire range of motor aspect ratios and operating conditions.

A form of the Rayleigh–Janzen technique was used by Flandro (1980) in the
context of a compressible internal-burning solid rocket motor. However, Flandro
solves quasi-one-dimensional forms of the governing equations; his solution is limited
by its inability to satisfy the compressible first-order vorticity transport equation. The
Rayleigh–Janzen expansion has been applied successfully by Majdalani (2005, 2007)
to determine the compressible analogue to the Taylor–Culick flow field in cylindrical
geometry and by Maicke & Majdalani (2006) in a rectangular context. While the
Rayleigh–Janzen method has been used to analyse other flow fields, notably the work
on Hill’s spherical vortex by Moore & Pullin (1998) and the Stuart vortex by Meiron,
Moore & Pullin (2000), it has not been widely applied to internal flow problems; this
leaves open the possibility of using this approach in other previously untreated cases,
such as the star-fin or wagon-wheel grain configurations.

What follows is our plan for the compressible injection-driven channel-flow analysis.
In §2, the geometric model is defined and the limiting assumptions are introduced.
Section 3 delineates the Rayleigh–Janzen expansion and illustrates the solution
methodology. The results of the study are presented in §4, complete with comparisons
to previous models and both numerical and experimental verifications. Design criteria
and performance characteristics are also derived. Section 5 brings the study to its
conclusion, summarizing the results and discussing possible extensions and outlook
towards future work.

2. Problem definition
2.1. Geometry

To model the slab rocket, a rectangular chamber of length L0 and half-height of
h is used (figure 1). The origin of the coordinate system describing the domain is
located at the centre of the headwall. The spatial variables x̄ and ȳ are defined as
the directions parallel and normal to the centre-axis. Taking advantage of symmetry,
a solution can be obtained for the top half of the chamber, namely 0 � ȳ � h and
0 � x̄ � L0, and mirrored across the centre-axis.
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Figure 1. Porous channel with an inert headwall.

Along the sidewalls, a uniform injection velocity of Uw is imposed. While there
are any number of factors that could affect the local velocity at the propellant
surface, density fluctuations, localized non-homogeneity of the propellant, and erosive
burning to name a few, this constraint gives a reasonable approximation of the
injection mechanism at the propellant surface. The headwall of the motor is solid
and inert, allowing for zero normal velocity at the headwall. The resulting model
corresponds to the steady inviscid compressible and non-heat-conducting flow of an
ideal gas.

2.2. Non-dimensional formulation

To facilitate the analysis, it is prudent to non-dimensionalize the variables of interest.
A standard methodology is employed resulting in the following parameters:

x =
x̄

h
, y =

ȳ

h
, u =

ū

Uw

, v =
v̄

Uw

, p =
p̄

p0

,

T =
T̄

T0

, ρ =
ρ̄

ρ0

, ψ =
ψ̄

Uwρ0h
, Ω =

Ω̄h

Uw

, ∇ = h∇̄,

(2.1)

where the bold symbol denotes a vector quantity, the overbar indicates a dimensional
variable, and the subscript ‘0’ describes a reference condition at the headwall. Given
this normalization, the compressible streamfunction and velocities become

u =
1

ρ

∂ψ

∂y
, v = − 1

ρ

∂ψ

∂x
. (2.2)

These relations are substituted into the vorticity definition to provide

∂2ψ

∂x2
+

∂2ψ

∂y2
=

1

ρ
(∇ρ·∇ψ) − Ωρ. (2.3)

In order to solve (2.3), another expression relating vorticity to the streamfunction is
required for the right-hand side of the equation to be fully determined. To that end,
we may apply the vorticity transport equation via

∇ × (U × Ω) =
1

γM2
wρ2

∇ρ × ∇p, (2.4)
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where the velocity vector is denoted as U = uî + vĵ . The momentum equation may
then be solved to determine the pressure from

ρ∇
[

1

2ρ2
(∇ψ ·∇ψ)

]
+ Ω∇ψ = − ∇p

γM2
w

. (2.5)

Finally, to bring closure to the problem, we may use

ρ = p1/γ , T = p(γ −1)/γ . (2.6)

Equation (2.6) is, of course, contingent on the flow being isentropic and calorically
perfect.

Our boundary conditions stem from the physical determination of the system. Since
the injection of the propellant at the sidewalls is normal to the surface, there is no
axial flow at the wall. The headwall of the chamber is inert, providing the second
condition. A uniform injection velocity is imposed at the sidewalls. Symmetry provides
the last boundary condition. Mathematically, these boundary conditions translate into

ū(x̄, h) = 0, ū(0, ȳ) = 0, v̄(x̄, h) = −Uw, v̄(x̄, 0) = 0, (2.7)

or, equivalently,

u(x, 1) = 0, u(0, y) = 0, v(x, 1) = −1, v(x, 0) = 0. (2.8)

2.3. Perturbation expansion

In order to solve (2.3)–(2.6), a Rayleigh–Janzen perturbation may be applied. This
requires expanding:

u(x, y) = u0 + M2
wu1 + O(M4

w), ρ(x, y) = 1 + M2
wρ1 + M4

wρ2 + O(M6
w),

v(x, y) = v0 + M2
wv1 + O(M4

w), p(x, y) = 1 + M2
wp1 + M4

wp2 + O(M6
w),

ψ(x, y) = ψ0 + M2
wψ1 + O(M4

w), T (x, y) = 1 + M2
wT1 + M4

wT2 + O(M6
w),

Ω(x, y) = Ω0 + M2
wΩ1 + O(M4

w).

⎫⎪⎪⎬
⎪⎪⎭ (2.9)

The perturbation expansions from (2.9) may be substituted into (2.2)–(2.6), and then
sorted by order of magnitude. Substitution into (2.2) produces

O(1) : u0 =
∂ψ0

∂y
, O(M2

w) : u1 =
∂ψ1

∂y
− ρ1

∂ψ0

∂y
. (2.10)

The same approach may be applied to the crossflow velocity v to yield

O(1) : v0 = −∂ψ0

∂x
, O(M2

w) : v1 = ρ1

∂ψ0

∂x
− ∂ψ1

∂x
. (2.11)

By substituting (2.1) into (2.3)–(2.6) and segregating the leading-order terms, we
obtain

O(1) :
∂2ψ0

∂y2
+

∂2ψ0

∂x2
= −Ω0, (2.12a)

O(M2
w) : ∇ × (U0 × Ω0) = 0, (2.12b)

O(M2
w) : −∇p1

γ
= ∇

(
∇ψ0·∇ψ0

2

)
+ Ω0∇ψ0, (2.12c)
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O(M2
w) : ρ1 =

p1

γ
, (2.12d)

O(M2
w) : T1 =

γ − 1

γ
p1. (2.12e)

Similarly, the leading-order expansion of the boundary conditions, when expressed in
terms of the streamfunction, becomes

∂ψ0(x, 1)

∂y
= 0,

∂ψ0(0, y)

∂y
= 0,

∂ψ0(x, 1)

∂x
= −1,

∂ψ0(x, 0)

∂x
= 0. (2.13)

The first-order governing equations may be obtained by collecting O(M2
w) and O(M4

w)
terms of the expanded (2.3)–(2.6); we extract

O(M2
w) :

∂2ψ1

∂y2
+

∂2ψ1

∂x2
= ∇ρ1·∇ψ0 − Ω0ρ1 − Ω1, (2.14a)

O(M4
w) : ∇ × (U0 × Ω1) + ∇ × (U1 × Ω0) = ∇ρ1 × ∇p1, (2.14b)

O(M4
w) : −∇p2

γ
= ∇ [(∇ψ0·∇ψ1) − ρ1 (∇ψ0·∇ψ0)]

+ ρ1∇
(

∇ψ0·∇ψ0

2

)
+ Ω0∇ψ1 + Ω1∇ψ0, (2.14c)

O(M4
w) : ρ2 =

p2

γ
+

1 − γ

γ
p2

1, (2.14d)

O(M4
w) : T2 =

γ − 1

γ
p2 +

1 − γ

2γ 2
p2

1. (2.14e)

Since the boundary conditions must be satisfied by the leading-order equation, a
set of homogeneous boundary conditions must be imposed from this point forward,
specifically,

ρ1

∂ψ0(x, 1)

∂x
− ∂ψ1(x, 1)

∂x
= 0,

∂ψ1(x, 1)

∂y
− ρ1

∂ψ0(x, 1)

∂y
= 0,

ρ1

∂ψ0(x, 0)

∂x
− ∂ψ1(x, 0)

∂x
= 0,

∂ψ1(0, y)

∂y
− ρ1

∂ψ0(0, y)

∂y
= 0.

⎫⎪⎪⎬
⎪⎪⎭ (2.15)

3. Solution
3.1. Leading-order solution

In order to solve (2.12a), we must determine an additional relationship between the
vorticity and the streamfunction using the vorticity transport equation. Expanding
(2.12b) and substituting the streamfunction in place of velocity, we find

∂ψ0

∂y

∂Ω0

∂x
=

∂ψ0

∂x

∂Ω0

∂y
. (3.1)

Equation (3.1) will be satisfied when

Ω0 = C2ψ0. (3.2)

With (3.2) providing the link between vorticity and the streamfunction, it is
now possible to solve (2.12a). The streamfunction may then be used to determine
the leading-order quantities of all parameters of interest, thus recovering Taylor’s
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incompressible solution to the slab rocket motor. With this in mind, (3.2) may be
substituted into (2.12a) such that

∂2ψ0

∂y2
+

∂2ψ0

∂x2
+ C2ψ0 = 0. (3.3)

Applying separation of variables yields the leading-order term

ψ0 = x sin
(

1
2
πy

)
. (3.4)

The determination of the first-order pressure follows directly once the leading-
order streamfunction is known. Removing the vorticity term from the equation by
substituting (3.2), the result is an equation that may be integrated directly for the
pressure. After some trigonometric simplifications, we find

p1 = − 1
2
γ

[
1
4
π2x2 + sin2

(
1
2
πy

)]
. (3.5)

Determining the first-order density and temperature requires the substitution of (3.5)
into (2.12d) and (2.12e), respectively. We get

ρ1 = − 1
2

[
1
4
π2x2 + sin2

(
1
2
πy

)]
, T1 = 1

2
(1 − γ )

[
1
4
π2x2 + sin2

(
1
2
πy

)]
. (3.6)

3.2. First-order solution

The first-order correction follows the same general outline as the leading-order
analysis; we solve the vorticity transport equation, followed by the vorticity equation,
the momentum equation for the pressure, and then finally the density and temperature
from the isentropic relations. However, the first-order equations are distinctly more
elaborate. It is not until the first-order corrections are determined that we can capture
the effects of compressibility on the internal flow field.

3.2.1. First-order vorticity transport

The vorticity transport equation is used to determine a relationship between vorticity
and the streamfunction at the first order. To that end, (2.14b) is examined. Since p1

and ρ1 differ only by a constant, γ , the right-hand side of (2.14b) vanishes given that
the cross-product between two collinear vectors is null. We are left with

∇ × (U0 × Ω1) + ∇ × (U1 × Ω0) = 0. (3.7)

Vector operations may then be expanded into

∂

∂x
(u0Ω1 + u1Ω0) +

∂

∂y
(v0Ω1 + v1Ω0) = 0. (3.8)

To identify the desired relationship between the first-order vorticity and
streamfunction, (2.10), (2.11) and (3.2) are substituted. We obtain

∂

∂x

[
∂ψ0

∂y
Ω1 +

π2

4

(
∂ψ1

∂y
− ρ1

∂ψ0

∂y

)
ψ0

]

+
∂

∂y

[
−∂ψ0

∂x
Ω1 +

π2

4

(
ρ1

∂ψ0

∂x
− ∂ψ1

∂x

)
ψ0

]
= 0. (3.9)

The derivatives are then evaluated and the expanded equation is simplified to yield

∂Ω1

∂x

∂ψ0

∂y
− ∂Ω1

∂y

∂ψ0

∂x
= 1

4
π2

[
ψ0

(
∂ρ1

∂x

∂ψ0

∂y
− ∂ρ1

∂y

∂ψ0

∂x

)
+

∂ψ1

∂x

∂ψ0

∂y
− ∂ψ1

∂y

∂ψ0

∂x

]
.

(3.10)
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The method of determining a relation without fully solving the equation is not
as practical for such a complex equation. However, further simplifications become
possible after realizing that the first-order vorticity is an extension of the leading-order
term. It is not enough to set Ω1 = π2ψ1/4 as this expression does not satisfy (3.10).
To find the proper expansion we must let

Ω1 = 1
4
π2ψ1 + Ωc, (3.11)

where Ωc is an additional correction. Equation (3.11) is then substituted into (3.10)
to provide

∂Ωc

∂x

∂ψ0

∂y
− ∂Ωc

∂y

∂ψ0

∂x
= 1

4
π2ψ0

(
∂ρ1

∂x

∂ψ0

∂y
− ∂ρ1

∂y

∂ψ0

∂x

)
, (3.12)

whence

Ωc = ± 1
32

π2x
[
π2x2 sin

(
1
2
πy

)
+ 4 sin2

(
1
2
πy

)]
+ f (ψ0) (3.13)

and f is some function that will be determined later to ensure that the first-order
equation satisfies all of the requisite conditions.

3.2.2. First-order vorticity

With the addition of (3.13), it is now possible to revisit (2.14a) as the vorticity
equation is now expressible in terms of the first-order streamfunction. Substitution of
(3.2), (3.4), (3.6) and (3.13) into (2.14a) gives

∂2ψ1

∂y2
+

∂2ψ1

∂x2
+ 1

4
π2ψ1 = − 1

4
π2x sin

(
1
2
πy

) [
− 1

4
π2x2 + 1 + cos (πy)

]
− f (ψ0). (3.14)

It is possible to solve (3.14) by assuming an ansatz and then solving two coupled
ordinary differential equations, rather than the single partial differential equation.
After the work shown in the Appendix, we retrieve

ψ1 = − 1
48

x sin
(

1
2
πy

) {
π2x2 [3 + cos (πy)] + 3 [7 − cos (πy)]

}
. (3.15)

3.2.3. Second-order thermodynamic variables

In order to determine the second-order pressure term, it is advantageous to expand
the vector equation presented in (2.14c) into two scalar equations:

∂p2

∂x
= −γ

∂

∂x

{
∂ψ0

∂x

∂ψ1

∂x
+

∂ψ0

∂y

∂ψ1

∂y
− ρ1

[(
∂ψ0

∂x

)2

+

(
∂ψ0

∂y

)2
]}

+ γ

{
1
2
ρ1

∂

∂x

[(
∂ψ0

∂x

)2

+

(
∂ψ0

∂y

)2
]

+ Ω0

∂ψ1

∂x
+ Ω1

∂ψ0

∂x

}
, (3.16)

∂p2

∂y
= −γ

∂

∂y

{
∂ψ0

∂x

∂ψ1

∂x
+

∂ψ0

∂y

∂ψ1

∂y
− ρ1

[(
∂ψ0

∂x

)2

+

(
∂ψ0

∂y

)2
]}

+ γ

{
1
2
ρ1

∂

∂y

[(
∂ψ0

∂x

)2

+

(
∂ψ0

∂y

)2
]

+ Ω0

∂ψ1

∂y
+ Ω1

∂ψ0

∂y

}
. (3.17)

Equations (3.16) and (3.17) may be partially integrated for

p2 = − 1
384

γ π4x4 + 1
128

γ π2x2(13 − cos 2πy) + C1(y)

p2 = − 1
64

γ π2x2 cos2 πy − 1
16

γ
(
cos πy + cos2 πy

)
+ C2(x)

}
. (3.18)
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After examining the two solutions and applying trigonometry, it is possible to combine
the relations in (3.18) and deduce the second-order pressure:

p2 = − 1
384

γ π4x4 + 1
64

γ π2x2(7 − cos2 πy) − 1
16

γ
(
cos πy + cos2 πy

)
. (3.19)

Determining the second-order density is a matter of substituting the pressure terms
from (3.5) and (3.19) into (2.14d):

ρ2 = 1
384

π4x4(2 − 3γ ) + 1
64

π2x2
[
9 − 2γ + 2(γ − 1) cos πy − cos2 πy

]
+ 1

32

[
1 − γ + 2(γ − 2) cos πy − (γ + 1) cos2 πy

]
. (3.20)

Similarly, the second-order temperature becomes

T2 = 1
192

(1 − γ )
[
2π4x4 − 3π2x2(5 + 2 cos πy − cos2 πy) + 6(1 + 3 cos2 πy)

]
. (3.21)

4. Results and discussion
4.1. Critical length

To facilitate comparisons to past results, both analytical and experimental, it is
convenient to normalize the axial distance by the critical length of the chamber. The
latter is defined as the distance, measured from the head end, to where the flow
reaches a sonic condition. For ease of calculation, the maximum axial velocity will be
used to calculate the critical length. Obtaining the axial velocity and temperature at
the centre-axis yields:

uc = u(x, 0) = 1
2
πx − 1

48
M2

wπx
(
9 − π2x2

)
, (4.1)

Tc = T (x, 0) = 1 + 1
8
(γ − 1)M2

wπ2x2 − M4
w

1
96

(γ − 1)
(
12 − 9π2x2 + π4x4

)
. (4.2)

These expressions are obtained from substituting the results from §3 into (2.9),
and evaluating the resulting expression along the centre-axis. Mathematically, the

critical length is represented by the expression ūc/
√

γRT̄c = 1, or in terms of our
dimensionless variables, Mwuc =

√
Tc. Substitution of (4.1) and (4.2) into the latter

produces

1
2304

M6
wπ6x6 + 1

384
M4

wπ4
[
4(γ + 1) − 3M2

w

]
x4

+ 1
256

M2
wπ2

[
32 (γ + 1) − 24 (γ + 1) M2

w + 9M4
w

]
x2 + 1

8
M4

w (γ − 1) − 1 = 0, (4.3)

which has the real, positive root

xs =
1

πMw

√
9M4

w + 6M2
w

[
φ1/3 − 4(γ + 1)

]
+ 8(γ + 1)

[
4(2γ − 1) − φ1/3

]
+ φ2/3

φ1/3
,

(4.4)
where

φ = −β +
√

β2 − α3,

α = 9M4
w − 24M2

w(γ + 1) + 32(2γ − 1)(γ + 1),
β = 27M6

w + 36M4
w(γ − 7) − 288M2

w(γ − 2)(γ + 1)
−128{14 + γ [6 − γ (3 + 4γ )]}.

⎫⎪⎪⎬
⎪⎪⎭ (4.5)

Equation (4.4) is only weakly dependent on the Mach number under the radical. We
can find a more manageable expression for the sonic length by writing

xsa =
1

πMw

√
φ

2/3
a − 8φ

1/3
a (γ + 1) + 32(2γ 2 + γ − 1)

φ
1/3
a

, (4.6)
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Figure 2. Comparison of the centre-axis (a) pressures and (b) temperatures from analytical
and computational models. γ = 1.4.

where

φa = −128[(4γ 3 + 3γ 2 − 6γ − 14)] + 3
√

−(3γ 4 + 14γ 3 + 6γ 2 − 18γ − 22). (4.7)

Equation (4.6) is accurate to the third decimal place when compared to the similar
full expression of the sonic length for injection Mach numbers appropriate for rocket
applications, specifically those not exceeding 0.05.

4.2. Computational verification

In order to ensure that the perturbation expansion is valid, a numerical verification
is undertaken. A finite-volume program provides the segregated two-dimensional
double-precision steady compressible solver that serves as a basis for the numerical
comparison. Laminar and Spalart–Allmaras models are both used to account for
the viscosity effects in the calculations. A rectangular geometry with a half-height
of 1 cm, a length of 45 cm, and a grid resolution of 100 × 280 is used to model
the slab geometry. The results are shown to be mesh independent by retaining their
consistency for a number of higher-resolution grids. These dimensions match those
adopted by Traineau et al. (1986) in their experimental and numerical investigations
of the same problem. A uniform mass injection is imposed on the sidewalls of 13 kg
m−2 s−1, providing a close approximation for the constant injection velocity used in
the perturbation analysis. The injectant is air with a temperature of 260 K, molecular
weight of 29 kg kmol−1, dynamic viscosity of 1.66 × 10−5 kg m−1 s−1, and a ratio of
specific heats of 1.4.

The first verification concerns the thermodynamic properties along the centre-axis
of the chamber, specifically, the pressure and temperature. These terms are chosen for
their ease of calculation, both numerically and analytically, as well as for their ability
to provide comparisons along the entire length of the chamber.

Figure 2(a) compares the centre-axis pressure profile using γ = 1.4. The length
scale, x/Ls , is introduced to normalize the length of the chamber by the sonic length
calculated in the previous section. This normalization facilitates the comparison of
chambers of varying sizes. By examining the solution presented here, good agreement
is observed near the headwall, with deviations from the numerical simulation
appearing as the flow progresses to the aft end. The present solution more closely
matches the Spalart–Allmaras model rather than the laminar flow model. This can
be attributed to the quasi-viscous nature of the solution, being driven by the normal
injection condition at the walls.

The temperature comparison in figure 2(b) presents a slightly different contrast.
As in the pressure comparison, the agreement near the headwall of the chamber is
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Figure 3. Comparison of predicted centre-axis velocity with numerical results. γ = 1.4.

excellent with deviations occurring as the flow progresses past the halfway point of
the chamber. The solution approaches the numerical results as the flow nears the exit.
The present analysis more closely follows the laminar numerical model, rather than
the more elaborate turbulent model. This is not unexpected and can be attributed
to two causes. The first is that while the normal injection condition at the walls
ensures quasi-viscous behaviour, it does not account for any thermal effects that a
viscous flow would introduce. Thus, the present analytical model would be expected to
under-predict the centre-axis temperature. The second cause is that the energy model
used to determine the temperature, namely isentropic flow, is restrictive. Relaxing
the isentropicity would possibly lead to a more accurate prediction of the centre-axis
temperature.

It is also of interest to compare the predicted velocity at various points in the
motor chamber. Since high velocities can lead to changes in motor performance,
it is important that these variations are correctly accounted for. In order to
obtain meaningful comparisons throughout the motor, the centre-axis velocities are
considered.

The centre-axis comparison in figure 3 shows some interesting features and generally
good agreement with the numerical results. The solution resembles the numerical data
early in the chamber, but then diverges under the numerical predictions near the end
of the chamber. This difference can be attributed to the lack of viscous effects in our
formulation. While it is true with the normal injection condition that some aspects of
the solution may more closely approximate a viscous model, the effect of the normal
injection decreases as the area of interest moves toward the centre-axis. The result is
a parallel flow with a slightly different shape from the one accounting for viscosity. If
the viscous losses were accounted for, no doubt the centre-axis velocity would have
trended toward closer agreement with the numerical results.

4.3. Theoretical and experimental comparisons

Flow in a rectangular channel has been a topic studied in a number of different
applications and, as such, has given rise to a wealth of theoretical and experimental
data available to make comparisons against. Even in the relatively narrow application
of the slab rocket motor, studies by Traineau et al. (1986) and Gany & Aharon (1999)
provide both theoretical and experimental results. Taylor’s incompressible solution
for the slab is another useful benchmark.

The baseline for comparison is the pressure distribution at the centre-axis of the
chamber (figure 4). Gany & Aharon (1999) provide a one-dimensional model for the
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Figure 4. Comparison of centre-axis pressures to former studies. γ = 1.4.

pressure distribution, namely,

p

p0

=
1 + γ [1 − (x/L)2]1/2

1 + γ
. (4.8)

Traineau supplies a pseudo-two-dimensional analysis using stream tube analysis, and
experimental data to compare against. The results here are somewhat surprising.
The one-dimensional model appears to closely match the experimental data for the
centre-axis pressure. Traineau notes the same, along with the justification for the
two-dimensional numerical simulation to under-predict the experimental data. It is
possible that the introduction of viscous effects would lower the axial gradient, thus
explaining the two-dimensional results from Traineau being lower than the observed
experimental data. However, it does not completely explain why the one-dimensional
model matches the centre-axis pressure prediction so well, while being less accurate
for other variables of interest. It is speculated that the effects of viscosity cancel in
the one-dimensional model since the flow is effectively injected along the centre-axis.
We would then expect the relaxing of the inviscid condition to produce a shift down
in the centre-axis pressure, bringing the predicted values in line with experimental
results.

To assess compressibility effects on velocity profiles at varying locations in the
chamber, our solution will be paired with data from Traineau’s experimental and
computational study. This enables us not only to observe the evolution predicted
by the present model, but also to establish a comparison grounded in reality with
the experimental results. Traineau collects measurements at various locations which,
when normalized by the length of the motor, occur at approximately 20% increments
of the total length, beginning at 40%.

The agreement of the asymptotic formulation with the experimental data shown in
figure 5 is encouraging. Until the flow reaches 40% of the sonic length, the fluid is
nearly incompressible, following the sinusoidal profile predicted by Taylor. However,
as the flow travels further downstream, the velocity profile steepens. This steepening is
found in both the experimental data and the computational verification of Traineau.
It has been posited previously by Balakrishnan et al. (1992) that the steepening
effects could be attributed to both compressibility and turbulent effects. Using the
present model as a guide, we can see that at least a portion of the steepening effect
can be attributed to the effects of compressibility. While the agreement between
the present model and the experimental data is not perfect, we would expect that
properly accounting for viscosity and possible turbulent effects would further steepen
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Figure 6. Axial velocity comparison with Balakrishnan et al. (1991). (a) x/Ls = 0.4, (b) 0.8.

the velocity profile, thus bringing it closer to agreement with the experimental
measurements.

Since the work of Balakrishnan et al. (1991) is still the most widely cited
compressible study of rocket motors, a comparison to the present investigation is
made in figure 6. Figure 6(a) depicts the velocity profile at x/Ls = 0.4, before
the effects of compressibility become dominant. Here, the velocity profiles of the
incompressible baseline, the present work, and the Balakrishnan numerical study
are all in close agreement. In figure 6(b), the flow is near the critical point at
x/Ls = 0.8, so compressibility effects are more pronounced. The present analysis
shows good agreement with the results of Balakrishnan’s study. While the present
solution slightly underpredicts the Balakrishnan work, it has the benefit of providing
a simple closed-form analytical alternative; Balakrishnan’s results are obtained by
numerically integrating a reduced equation that is arrived at using two assumptions
not considered here: a sufficiently long, slender chamber, and purely axial dependence
in the radial momentum equation.

4.4. Streamlines

The behaviour of the streamlines is illustrated by figure 7. The solid lines depict the
incompressible streamlines and the dotted lines display the effects of compressibility.
When compressibility effects are accounted for, the streamlines turn more rapidly,
thus generating a steeper profile. As the injection velocity is increased, the behaviour
becomes more pronounced, and deviations from the incompressible condition are
observed earlier in the flow. As the injection Mach number is increased, the distance
required for the flow to reach sonic conditions quickly decreases. This behaviour is
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Figure 7. An illustration of the effects of compressibility on the streamlines. The solid lines
represent the incompressible solution and the dashed lines depict the compressible solution.
(a) Mw = 0.01, (b) 0.006.

reflective of a strong correlation between the critical distance and Mw , as alluded to
in §4.1.

Near the headwall, the effects of compressibility are negligible, a behaviour that
was previously observed in the numerical simulation. As the fluid travels toward
the aft end and increases in speed, compressibility effects become more pronounced.
Using the streamline plot as a guide, it is possible to calculate the point where the
magnification of the velocity via compressibility becomes so large that it must be
accounted for.

4.5. Compressible design criterion

We can define a set of criteria for measuring the effects of compressibility. The first
criterion is the compressibility ratio,

χc =
u(x, 0)

u0(x, 0)
. (4.9)

This is simply the ratio between the compressible and incompressible velocities. It
represents the amplification of the centre-axis velocity at a given location in the
chamber.

It is possible to obtain an analytical expression for the compressible amplification
via substitution of (2.9) and (2.10) into (4.9). These yield

χc = 1 + 1
24

M2
w

(
π2x2 − 9

)
. (4.10)

One way to make use of the formulation in (4.10) effectively is to introduce an
acceptable error, here labelled ε. If we know that a velocity error of up to 5% is
acceptable, we let χc = 1 + ε. With this substitution and subsequent simplification,
(4.10) becomes

xε =

√
24ε

M2
wπ2

+
9

π2
. (4.11)

Equation (4.11) represents an expression for the location in the chamber where an
error of ε is first introduced. However, to find a reasonable approximation, the 9/π2

may be ignored as the first term in the equation dominates for typical values expected
in rocket design; we are left with

xε =
2
√

6ε

Mwπ
. (4.12)
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Conversely, if the geometry of the chamber is fixed, we can obtain a rough
approximation of the maximum injection Mach number by rearranging the equation
to yield 2

√
6ε/(πx). Since calculations of this type often degrade in the vicinity of

the nozzle, it is common practice to specify that an error is acceptable if it is limited
to a small fraction of the chamber length near the nozzle. We can thus introduce
x = (1 − z)L, where z is the segment along which the error may exceed ε (the last
1/8 for example), and L = L0/a is the aspect ratio of the chamber. This substitution
yields

M∗
w =

2
√

6ε

π(1 − z)L
. (4.13)

The validity of these criteria is easily verifiable. The compressibility criteria set
forth in (4.12) and (4.13) were actually used to select the streamfunction plots shown
in figure 7. This was accomplished by allowing a 5% deviation in the last eighth
of the motor. In figure 7(a), it is advisable to absorb the extra complexity of the
compressible model in favour of the more accurate flow-field prediction. From a
cursory examination of the streamlines, we can see significant deviations from the
incompressible flow model almost immediately. In the second, less extreme, case
shown in figure 7(b), the effects of compressibility are relatively negligible. Steepening
of the streamlines is observed, but not to an appreciable level.

4.6. Internal ballistics

Since the primary variables are known at any position in the chamber, it is possible
to calculate secondary performance characteristics. More so than velocity profiles or
streamline plots, these ballistics terms are at the heart of rocket analysis. In what
follows, we determine some of the critical ballistics criteria that arise in practical
analyses of nozzleless rocket motors.

4.6.1. Specific impulse

First an expression for the total mass flow rate at any given cross-section may be
determined to good approximation by

ṁ =

∫
ρu dA = 2w

∫ 1

0

ρu dy

= 1
2304

Uwρ0h
2wx(M2

wπ2x2 + 12)

×
[
M4

wπ4x4(2 − 3γ ) − 48M2
wπ2x2 + 384

]
+ O(M5

w), (4.14)

where w = w̄/h. This equation is accurate to three significant digits for the range of
operation of most motors.

The thrust force for a given motor length can be expressed as

F =

∫
ρu2 dA = 2w

∫ 1

0

ρu2 dy

= 1
1536

h2ρ0U
2
wπ2x2w( 29

4608
M4

wπ4x4 + 7
48

M2
wπ2x2 + 1)

×
[
M4

wπ4x4(2 − 3γ ) − 48M2
wπ2x2 + 384

]
+ O(M5

w). (4.15)

Equation (4.15) is also an approximate expression for the thrust force, accurate to
three significant digits.
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When the thrust force is divided by the mass flux and the standard acceleration of
gravity at sea level, we can determine the specific impulse, namely,

Is =
F

ṁg0

=
Uw

3072g0

π2x(M2
wπ2x2 + 12)−1

×(29M4
wπ4x4 + 672M2

wπ2x2 + 4608) + O(M5
w). (4.16)

Note that Is is independent of the motor cross-section.
If compressibility effects are ignored, the specific impulse becomes

(Is)inc =
π2Uw

8g0

x. (4.17)

A comparison of the two terms over the length of a typical motor is presented in
figure 8. The first case corresponds to the cold-flow injection of air used by Traineau
et al. (1986). A second hot-flow case is shown for a motor of similar size to cover a
more realistic range of values for the specific impulse. Near the headwall, both the
compressible and incompressible specific impulses follow the same linear relationship.
Once the flow nears the midpoint of the chamber, the compressible expression diverges
as the nonlinear terms in (4.16) begin to dominate. Note that the axial distributions in
figures 8(a) and 8(b) have similar relative proportions. This is easily explained by the
common dependence on the injection velocity, Uw . In (4.16) and (4.17), Uw appears
as a scaling parameter, multiplying both expressions equally.

It is also of interest to note that by scaling the length of the chamber by the
critical distance, the specific impulse curve for a given value of Uw will be the
same for a variety of chambers. For example, figure 8 is generated using values
based on Traineau’s experimental case with Ls = 45.5. If we select a lower value
for injection, say Mw = 0.0034 and Ls = 153.78, creation of a similar plot will
produce curves that are identical to figure 8, despite their smaller injection Mach
number.

4.6.2. Characteristic velocity

Another value of merit is the characteristic velocity, c∗. The characteristic velocity
is a comparative measure of propellant and combustion system performance. Because
c∗ is independent of the nozzle performance, it is ideal for evaluating nozzleless rocket
performance. Sutton & Biblarz (2001) define c∗ as

c∗ =
pcAt

ṁ
. (4.18)
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where pc is the combustion chamber pressure, At is the throat area of the nozzle,
and ṁ is the mass flow rate through the motor. Because our analysis is not limited
by a constant pressure throughout the combustion chamber, an average value of the
chamber pressure may be readily calculated from

pc =

∫
p dV

V
=

p0

L

∫ 1

0

∫ L

0

p dx dy

= p0

[
1 − M2

wγ
(

1
4

+ 1
24

π2L2 + 1
32

M2
w − 13

384
π2L2M2

w + 1
1920

π4L4M2
w

)]
. (4.19)

At the outset, we find

c∗ =
12a2

0

[
−1920/γ + 80M2

w

(
6 + L2π2

)
+ M4

w

(
60 − 65L2π2 + L4π4

)]
5LUw

(
12 + L2M2

wπ2
) [

−384 + 48L2M2
wπ2 + L4M4

wπ4 (3γ − 2)
] . (4.20)

Figure 9 depicts the characteristic velocity for motors of varying length.
Unsurprisingly, the expression in (4.20) is singular at the origin, being strongly
dependent on the length of the motor. For short chambers, c∗ → ∞. When the
length of the motor increases to the practical range of aspect ratios, the values of the
characteristic velocity quickly fall in line with the normal range of values expected
for solid rocket motor operation. The shape of the plot in figure 9 suggests that while
smaller chambers may be more efficient, efficiency is nearly invariant in longer motors
since the curve approaches a fixed value as the length of the motor is extended.

5. Conclusion
The Rayleigh–Janzen perturbation approach presented here produces a compact

closed-form solution with results that are in good agreement with both computation
and experiment. The closed-form expressions for the variables of interest help
to further the understanding of compressibility effects on the flow field of a
surface-injection-driven chamber, where previously only numerical or experimental
predictions were tenable. Variations from the numerical analysis in pressure can be
accounted for by the neglect of viscosity. The temperature is affected by the absence
of viscosity and the isentropic assumption. Further analysis using a more complete
energy model is suggested in an attempt to bring the temperature predictions to
closer agreement with numerical values. In addition to advancement of compressible
flow theory, practical relations are presented to aid the design of both regular and
nozzleless rockets.
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Appendix. First-order streamfunction
Since f (ψ0) is used to satisfy the boundary conditions, it is expected that the f (ψ0)

term will follow the form of the right-hand side. To this end, we posit

f (ψ0) = A1x sin
(

1
2
πy

)
+ A2x

3 sin3
(

1
2
πy

)
. (A 1)

To further simplify bookkeeping, we let η = πy/2. Next, a solution is assumed of the
form

ψ1(x, η) = xg(η) + x3h(η). (A 2)

Substitution into (3.14) yields

1
4
π2

[
x (g′′ + g) + x3 (h′′ + h)

]
+ 6xh

= − 1
4
π2x sin (η)

[
− 1

4
π2x2 + 1 + cos (2η)

]
+ A1x sin η + A2x

3 sin3 η, (A 3)

where the primed quantities represent derivatives with respect to η. Equation (A 3)
simplifies by grouping all terms in powers of x. We obtain

x3
[

1
4
π2

(
h′′ + h − 1

4
π2 sin η

)
− A1 sin3 η

]
+ x

[
1
4
π2 (g′′ + g + sin η + cos 2η sin η) + 6h − A2 sin η

]
= 0. (A 4)

In order for (A 4) to be true for all values of x, the bracketed quantities multiplying
both the x3 and x terms must each be set to zero. The partial differential equation
may thus be written as two ordinary differential equations:

h′′ + h = 1
4
π2 sin η + A1 sin3 η, (A 5)

g′′ + g =
4

π2
(A2 sin η − 6h) − sin η − cos 2η sin η. (A 6)

Equation (A 5) yields

h = C1 cos η + C2 sin η + 1
16

π2 (cos η sin 2η − 2η cos η − sin η − cos 2η sin η)

+
A1

8π2
(cos 4η sin η + 8 cos η sin 2η − 12η cos η − 4 cos 2η sin η − cos η sin 4η) . (A 7)

This may then be substituted at the right-hand side of (A 6) so that all of the non-
homogeneous terms are determined. This follows the same methodology as used to
determine (A 7). We obtain

g = C3 cos η + C4 sin η +
A1

16π4
[144

(
η cos η + η cos η cos 2η + η2 sin η + η sin η sin 2η

)
+156 cos 2η sin η − 132 cos η sin 2η + 6 (cos 4η sin η − cos η sin 4η)]

+
A2

π2
(cos η sin 2η − 2η cos η − cos 2η sin η) − 6C1

π2
(cos η cos 2η + 2η sin η + sin η sin 2η)

+
6C2

π2
(cos 2η sin η + 2η cos η − cos η sin 2η)

+ 1
16

[12
(
η cos η cos 2η + η2 sin η + η sin η sin 2η

)
+ 10 cos 2η sin η

−6 cos η sin 2η + 4η cos η + cos 4η sin η − cos η sin 4η]. (A 8)
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Now the relationships for h and g may be substituted into (A 2); we obtain

ψ1 =
1

16π4
x(−2 cos η{12A1η(π2x2 − 12)

+ π2[16A2η + π4x2η + 48(C1 − 2ηC2) − 8π2(η + x2C1 + C3)]}
+ 4 sin η{3A1[π

2x2 + 12(η2 − 1)] + π2[4A2 − 24(2ηC1 + C2)

+ π2(−2 + 3η2 + 4x2C2 + 4C4)]} + sin 3η[π4 + 2A1(π
2x2 + 3)]. (A 9)

While (A 9) does not appear to be a simple expression, potential for simplification
stems from administering the boundary conditions. The solution for the undetermined
coefficients follows the same method as pursued earlier in the determination of the
leading-order coefficients. We first examine the no flow across the centre-axis from
(2.15); recalling that it is evaluated at (x, 0), we can put

− 6C1

π2
+ C3 + 3x2C1 = 0. (A 10)

In order for this equation to be true ∀x, the coefficients multiplying the x2 and the
x0 terms must vanish independently. This single boundary condition may actually be
used as two equations that render

C1 = 0, C3 = 0. (A 11)

Revisiting (2.15), we have

1

16π4
x3

(
6A1π4 + 1

2
π8

)
+

1

16π4
x

[
−72A1π2 + 8A2π4 − 4π6 + 4

(
18A1π

2 + 1
2
3π6

)
− 48π4C2

]
= 0. (A 12)

This may be turned into two equations such that (A 12) holds for all values of x:

A1 = − 1
12

π4, 8A2π
4 + 2π6 − 48π4C2 = 0. (A 13)

At this juncture, it is advantageous to apply the final boundary condition from (2.15),
namely,

x2
(
3C2 − 1

32
π2

)
+ C4 +

21

32
+

A2

π2
− 6C2

π2
= 0. (A 14)

This, in turn, gives

C2 = 1
96

π2, C4 +
21

32
+

A2

π2
= 0. (A 15)

Solving (A 13) and (A 15) simultaneously determines the final two constants

A2 = − 3
16

π2, C4 = −15

32
. (A 16)
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